

PROJETO DE CONTROLADORES PARA SISTEMAS LINEARES EM TEMPO CONTÍNUO

Lucas Padilha dos Santos¹, Diogo Ramalho de Oliveira^{1,2}

¹ Instituto Federal de Educação, Ciências e Tecnologia de Mato Grosso do Sul (IFMS) – Três Lagoas - MS

² Universidade Estadual Paulista (UNESP) – Ilha Solteira - SP

luccas_life@outlook.com, diogo.ramalho@ifms.edu.br

Resumo

Este trabalho apresenta o projeto e a implementação prática de um sistema de controle para um sistema 2D ball balancer. O projeto de controle baseia-se na teoria de Lyapunov e utiliza desigualdades matriciais lineares para garantir estabilidade ao sistema controlado. O sistema 2D ball balancer é representado por um sistema linear em tempo contínuo através de espaço de estados.

Palavras-chave: sistemas de controle, LMIs, espaço de estados, tempo contínuo.

Metodologia e desenvolvimento

Nas últimas décadas é cada vez mais frequente a utilização de desigualdades matriciais lineares (do inglês, *Linear Matrix Inequalities* – LMIs) para o projeto de controle de sistemas dinâmicos, em busca de estabilidade e um melhor desempenho.

Considere o seguinte sistema linear em tempo contínuo descrito através de espaço de estados:

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{1}$$

$$y(t) = Cx(t) \tag{2}$$

sendo que $x(t) \in \mathbb{R}^n$ é o vetor de estado, $\dot{x} \in \mathbb{R}^n$ é a derivada temporal do vetor de estado x(t), $u(t) \in \mathbb{R}^m$ é o sinal de controle, $y(t) \in \mathbb{R}^p$ é a saída do sistema e $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ e $C \in \mathbb{R}^{p \times n}$ são matrizes conhecidas.

O sistema 2D ball balancer

O sistema dinâmico a ser controlado é o *2D ball balancer*, pertencente ao Laboratório de Pesquisa em Controle (LPC) da UNESP – Campus Ilha Solteira, que está apresentado na Figura 1.

Figura 1. Sistema *2D ball balancer* pertencente ao LPC-UNESP-Ilha Solteira.

O sistema 2D ball balancer é fabricado pela Quanser® e seu modelo esquemático, referente ao eixo x, está representado na Figura 2. A sua representação referente ao eixo y é dada da mesma forma.

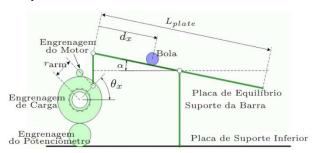


Figura 2. Modelo matemático do eixo x do 2D ball balancer (Quanser, 2008).

O sistema 2D ball balancer fabricado pela Quanser® consiste em um placa quadrada montada sobre dois servomotores na qual uma esfera movimenta-se com dois graus de liberdade, sendo que o ângulo de inclinação da placa pode ser ajustado para equilibrar a bola sobre uma posição plana desejada. Uma câmera superior é utilizada para medir a posição da bola (Souza, 2014).

O sistema 2D ball balancer pode ser representado através de espaço de estados (eixo x), tal que o vetor de estados x(t) é dado por

$$x(t) = \begin{bmatrix} d_x(t) \\ \dot{d}_x(t) \\ \theta_x(t) \\ \dot{\theta}_y(t) \end{bmatrix}$$
(3)

sendo que $d_x(t)$ é a posição da bola, $\dot{d}_x(t)$ é a velocidade da bola, $\theta_x(t)$ é a posição angular do servomotor e $\dot{\theta}_x(t)$ é a velocidade angular do servomotor.

O modelo matemático linearizado do sistema *2D ball balancer* (Quanser, 2008) são dados por duas equações apresentadas a seguir.

A primeira equação representa a dinâmica entre a bola e a placa, relacionando a aceleração da bola $\ddot{d}_x(t)$ com a posição angular do servomotor $\theta_x(t)$, tal que

$$\ddot{d}_{x}(t) = K_{hh}\theta_{x}(t) \tag{4}$$

sendo que

$$K_{bb} = \frac{2m_b g r_{arm} r_b^2}{L_{plate} (m_b r_b^2 + J_b)}$$

A segunda equação representa a dinâmica do servomotor, relacionando a aceleração e velocidade angular ($\ddot{\theta}_r(t)$) e $\dot{\theta}_x(t)$) com a tensão de entrada $V_m(t)$, tal que

$$\tau \ddot{\theta}_x(t) + \dot{\theta}_x(t) = K_m V_m(t) \tag{5}$$

Os parâmetros τ e K_m são valores constantes do servomotor e são dados pelo fabricante. Todos os parâmetros citados anteriormente estão apresentados de forma detalhada na Tabela 1.

Tabela 1. Parâmetros do sistema 2D ball balancer.

Parâmetros	Símbolo	Valor
Massa da bola (kg)	m_b	0,003
Distâncias do eixo do motor ao ponto de fixação da barra (cm)	r_{arm}	2,54
Raio da bola (cm)	r_b	1,96
Comprimento da mesa (cm)	L_{plate}	27,5
Parâmetro do motor (rad/sV)	K_m	1,76
Parâmetro do motor (s)	τ	0,00285
Momento de inércia de uma esfera sólida (kgcm²)	J_b	0,0046
Parâmetro do sistema (m/s²rad)	K_{bb}	1,3

Considerando o vetor de estado dado em (3), o sinal de controle $u(t) = V_m(t)$ e as equações dadas em (4) e (5), o sistema 2D ball balancer das Figuras 1 e 2 pode ser representado matematicamente por (1) e (2), sendo que

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & K_{bb} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -\frac{1}{\tau} \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ \frac{K_m}{\tau} \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}.$$

$$(6)$$

Estudo da estabilidade do sistema

Primeiramente deve-se investigar a estabilidade do sistema em tempo contínuo em malha aberta, ou seja, u(t) = 0. O sistema dado em (1) pode ser reescrito como

$$\dot{x}(t) = Ax(t) \tag{7}$$

O sistema linear em tempo contínuo dado em (7) é assintoticamente estável se qualquer uma das condições abaixo for verificada (Boyd et al., 1994; Oliveira e Peres, 2010):

- $\lim_{t\to\infty} x(t) \to 0$, condição inicial x(0) arbitrária
- $\max_{i} \operatorname{Re}\{\lambda_{i}(A)\} < 0, i \in \{1, ..., n\}$

sendo que $\lambda(A)$ representa os autovalores da matriz A. O SciLab e o MatLab calculam os autovalores de uma matriz utilizando o comando "spec" e "eig", respectivamente.

A estabilidade do sistema (7) (ou simplesmente a estabilidade de A) pode ser também investigada por meio de uma função de Lyapunov V(x(t)). Para que o sistema seja assintoticamente estável no sentido de Lyapunov, duas condições devem ser verificadas:

$$V(x(t)) > 0, \quad \forall x(t) \neq 0$$

 $\dot{V}(x(t)) < 0, \quad \forall x(t) \neq 0$

Considerando uma função de Lyapunov do tipo quadrática, dada por

$$V(x(t)) = x(t)^T P x(t)$$

sendo que $P \in \mathbb{R}^{n \times n}$ é uma matriz simétrica, tem-se que

$$V(x(t)) = x(t)^T Px(t) > 0, \forall x(t) \neq 0 \Leftrightarrow P > 0$$

e

$$\dot{V}(x(t)) = \dot{x}(t)^T P x(t) + x(t)^T P \dot{x}(t)$$

$$= x(t)^T (A^T P + P A) x(t) < 0$$

$$\Leftrightarrow A^T P + P A < 0$$

Observe que uma matriz $P = P^T \in \mathbb{R}^{n \times n}$ é definida positiva $x(t)^T P x(t) > 0, \forall x(t) \neq 0$ 0 que todos os autovalores (ou que todos os menores principais líderes) de P devem ser positivos. Além disso, tem-se que $A^TP + PA$ é definida negativa se $-(A^TP +$ PA) > 0.

O chamado Teorema de Lyapunov adaptado para o caso de sistemas lineares em tempo contínuo pode ser formulado diretamente em termos de LMIs.

Teorema 1 (Lyapunov) As trajetórias de $\dot{x}(t) = Ax(t)$ convergem para a origem se e somente se existir uma matriz definida positiva $P \in \mathbb{R}^{n \times n}$ tal que $A^T P + PA < 0$. Nesse caso, diz-se que o sistema é assintoticamente estável.

Projeto de controle usando LMIs

De forma geral, o projeto de controle para um sistema dinâmico é realizado quando:

- O sistema em malha aberta é instável;
- O sistema em malha aberta é estável, porém apresenta um desempenho dinâmico insatisfatório.

As LMIs também podem ser utilizadas no projeto de uma lei de controle para o sistema dinâmico, de forma que o controlador projetado estabilize assintoticamente o sistema dinâmico. Além disso, é possível inserir uma restrição denominada taxa de decaimento ($\rho > 0$), que está diretamente relacionada ao tempo de estabilização do sistema em malha fechada.

Uma lei de controle bastante utilizada é dada por

$$u(t) = -Kx(t) \tag{8}$$

sendo que $K \in \mathbb{R}^{m \times n}$. Dessa forma, o sistema (1) em malha fechada, utilizando a lei de controle (8), pode ser representado por

$$\dot{x}(t) = (A - BK)x(t) \tag{9}$$

A estabilidade do sistema (9) (ou simplesmente a estabilidade do sistema em malha fechada (A - BK) pode ser também investigada por meio de uma função de Lyapunov V(x(t)). Para que o sistema assintoticamente estável no sentido de Lyapunov e possua taxa de decaimento ρ , duas condições devem ser verificadas (Boyd et al., 1994):

$$V(x(t)) > 0, \quad \forall x(t) \neq 0$$

 $\dot{V}(x(t)) < -2\rho V(x(t)), \quad \forall x(t) \neq 0$

Considerando uma função de Lyapunov do tipo quadrática, dada por

$$V(x(t)) = x(t)^T P x(t)$$

sendo que $P \in \mathbb{R}^{n \times n}$ é uma matriz simétrica, tem-se que

$$V(x(t)) = x(t)^T Px(t) > 0, \forall x(t) \neq 0 \Leftrightarrow P > 0$$

$$\dot{V}(x(t)) + 2\rho V(x(t))
= \dot{x}(t)^T P x(t) + x(t)^T P \dot{x}(t)
+ 2\rho x(t)^T P x(t)
= x(t)^T ((A - BK)^T P + P(A - BK)
+ 2\rho P)x(t) < 0$$

$$\Leftrightarrow (A - BK)^T P + P(A - BK) + 2\rho P < 0$$

Podemos rescrever

$$(A - BK)^T P + P(A - BK) + 2\rho P$$

= $A^T P - K^T B^T P + PA - PBK + 2\rho P$
< 0

Por congruência tem-se

$$P^{-1}(A^TP - K^TB^TP + PA - PBK + 2\rho P)P^{-1} < 0$$

Como $PP^{-1} = P^{-1}P = I_n$, sendo que I_n é uma matriz identidade de dimensão n, a desigualdade anterior é equivalente a

$$P^{-1}A^TPP^{-1} - P^{-1}K^TB^TPP^{-1} + P^{-1}PAP^{-1} \\ - P^{-1}PBKP^{-1} + 2\rho P^{-1}PP^{-1}$$

$$= P^{-1}A^{T} - P^{-1}K^{T}B^{T} + AP^{-1} - BKP^{-1} + 2\rho P^{-1} < 0$$

Realizando as mudanças de variáveis, tal que $X = P^{-1}$ e M = KX, tem-se

$$XA^T - M^TB^T + AX - BM + 2\rho X < 0$$

Observe que a LMI anterior está descrita em função de X, tal que $X = P^{-1}$. Logo, a LMI P > 0 pode ser substituída por X > 0 (pois por congruência $P^{-1}PP^{-1} > 0$ e $P^{-1}PP^{-1} = I_nP^{-1} = P^{-1} = X$, logo X > 0).

Teorema 2 (Estabilidade + Taxa de Decaimento) As trajetórias de $\dot{x}(t) = (A - BK)x(t)$ convergem para a origem se e somente se existirem uma matriz definida positiva $X \in \mathbb{R}^{n \times n}$ e uma matriz $M \in \mathbb{R}^{m \times n}$ tal que

$$XA^T - M^TB^T + AX - BM + 2\rho X < 0$$

Nesse caso, diz-se que o sistema é assintoticamente estável e possui uma taxa de decaimento ρ. O controlador é dado $por K = MX^{-1}$.

O Teorema 2 pode ser utilizado para projetar um controlador K que estabilize e garanta uma taxa de decaimento ρ ao sistema em malha fechada.

Resultados e Considerações Finais

Substituindo os valores das constantes do sistema (ver Tabela 1) nas matrizes A, B e C que são dadas em (6), tem-

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1,3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -35,08 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 61,75 \end{bmatrix},$$
$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

Além disso, os autovalores da matriz A são

$$\lambda_1 = 0$$

$$\lambda_2 = 0$$

$$\lambda_3 = 0$$

$$\lambda_4 = -35,08$$

Note que a condição max $Re\{\lambda_i(A)\} < 0$, $i \in \{1, ..., n\}$ não é satisfeita, pois existem autovalores iguais a zero, concluindo que o sistema em malha aberta é instável. Além disso, o Teorema 1 não apresenta uma solução factível, comprovando novamente que o sistema em malha aberta é instável.

Inicialmente, considerou-se uma taxa de decaimento $\rho = 0$, ou seja, o projeto de controle garante estabilidade ao sistema realimentado. Utilizando o Teorema 2 para $\rho = 0$, foi obtida uma solução factível para as LMIs (utilizando o SciLab), e o controlador K encontrado é dado por

$$K = \begin{bmatrix} 0.055 & 0.143 & 0.207 & -0.498 \end{bmatrix}$$
 (10)

Utilizando o SciLab, simulou-se a resposta dinâmica do sistema realimentado (9) e (10) considerando uma condição inicial $x(0) = [0,5 \quad 0 \quad 0 \quad 0]^T$. A variação da posição $d_x(t)$ está apresentada na Figura 3.

Analisando a Figura 3, observe que o tempo de estabilização do sistema é de aproximadamente 10s. Mesmo que o sistema tenha uma resposta temporal estável, o desempenho do sistema não é adequado, pois o tempo de estabilização é grande. Logo, o controlador K dado em (10) não pode ser implementado na prática. Uma solução é aumentar a taxa de decaimento do sistema, pois este parâmetro está diretamente relacionado ao tempo de estabilização do sistema realimentado.

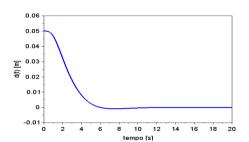


Figura 3. Simulação da resposta temporal da posição da bola do sistema em malha fechada (9) e (10) (eixo x).

Utilizando o Teorema 2 para $\rho = 3$, foi obtida uma solução factível para as LMIs (utilizando o SciLab), e o controlador K encontrado é dado por

$$K = \begin{bmatrix} 16,942 & 10,999 & 3,292 & -0,267 \end{bmatrix}$$
 (11)

Novamente, utilizando o SciLab, simulou-se a resposta dinâmica do sistema realimentado (9) e (11) considerando uma condição inicial $x(0) = \begin{bmatrix} 0.5 & 0 & 0 \end{bmatrix}^T$. A variação da posição $d_x(t)$ está apresentada na Figura 4.

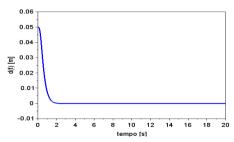


Figura 4. Simulação da resposta temporal da posição da bola do sistema em malha fechada (9) e (11) (eixo x).

Analisando a Figura 4, observe que o tempo de estabilização do sistema é de aproximadamente 2s. Este tempo de estabilização possibilita a implementação prática do controlador (11).

O controlador K, dado em (11), foi implementado no sistema 2D ball balancer e o resultado está apresentado na Figura 5. Nesta figura são apresentados: a posição $d_x(t)$, a posição angular $\theta_x(t)$ e o sinal de controle $u_x(t)$.

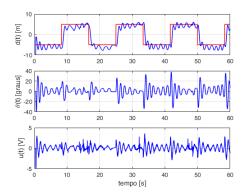


Figura 5. Resposta temporal da implementação do sistema em malha fechada com o controlador (11) (eixo x).

O objetivo da implementação é fazer com que a bola siga uma referência pré-definida, apresentada em vermelho na Figura 5. Note que a trajetória da bola, apresentada em azul, de fato segue a referência. No segundo quadro é apresentada a variação do ângulo de servomotor. Por fim, no terceiro quadro é apresentado o sinal de controle u(t), sendo que este é calculado automaticamente pelo *software* MatLab através da lei de controle u(t) = -Kx(t).

Note que, o controlador K, dado em (11), projetado através do Teorema 2 garantiu estabilidade e bom desempenho ao sistema em malha fechada, validando a metodologia proposta.

Agradecimentos

Ao IFMS/TL pelo incentivo financeiro de acordo com o Edital 027/2018 – Propi/IFMS. À UNESP/FEIS por permitir a utilização do LPC, 2D *ball balancer* e *software* MatLab.

Referências

Souza, W.A., de Oliveira, D.R., Teixeira, M.C.M., Silva, L.S.C., Cardim, R., and Assunção, E. (2014). Projeto e implementação de um controlador robusto chaveado utilizando modelos fuzzy Takagi-Sugeno. XX Congresso Brasileiro de Automática.

Quanser, I. (2008). 2D Ball Balancer Controle using QUARC: Instructor Manual, Technical report.

S. Boyd; L. E. Ghaoui; E. Feron; V. Balakrishnan. "Linear Matrix Inequalities in Systems and Control Theory". 2nd. Ed. [S.1.]: SIAM Studies in Applied Mathematics, 1994. 193 p. (Studies in Applied Mathematics, 15).

Oliveira, R. C. L. F.; Peres, P. L. D. Análise e controle de sistemas lineares por meio de desigualdades matriciais lineares. Tutoriais do XVIII Congresso Brasileiro de Automática. São Paulo: Cultura Acadêmica, 2010. p. 203–229.